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Reed-Solomon (RS)  codes form an important part of the high-rate downlink telemetry 
system for the Magellan mission, and the RS decoding function for this project will be 
done by the DSN. Although the basic idea behind all Reed-Solomon decoding algorithms 
was developed by Berlekamp in 1968, there are dozens of variants of Berlekamp’s algo- 
rithm in current use. This paper attempts to restore order by presenting a mathematical 
theory which explains the working of almost all known RS decoding algorithms. The key 
innovation that makes this possible is the unified approach to the solution of the key 
equation, which simultaneously describes the Berlekamp, Berlekamp-Massey, Euclid, and 
continued fractions approaches. Additionally, a detailed analysis is made o f  what can 
happen to a generic RS decoding algorithm when the number of errors and erasures 
exceeds the code’s designed correction capability, and it is shown that while most pub- 
lished algorithms do not detect as many of these error-erasure patterns as possible, by 
making a small change in the algorithms, this problem can be overcome. 

1. Decoding Reed-Solomon Codes Let F be a field which contains a primitive nth root of - 
unity a. (We assume that the characteristic of the field does 
not divide n.) If and are fixed integers between and n ,  In this article we will give a general definition of Reed- 

problem, describe the two main classes of decoding algorithms 
(time- and frequency-domain decoders), and then give three 

codes, state the abstract Reed-So1omon decoding the set of all codewords (vectors) C = (Co, . . . , Cn-l) over 
such that 

theorems. Theorem 1 explains why the RS decoding algo- 
rithms work, and Theorems 2 and 3 delineate exactly what 
happens if the number of errors and erasures exceeds the 
codes’ designed correction capability. The article concludes 
with three appendices, which give the mathematical back- 
ground needed for the proofs of the theorems presented. 

n-1 

<.a’’= o j = L , L + I  , . . . ,  ~ t r - 1  (1) 
i=  0 

is called a Reed-Solomon code. The parameters n ,  r ,  and L are 
called the length, redundancy, and offset of the code. The 
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parameters k = n - r is called the code’s dimension. (Com- 
monly L = 0, 1, or (n - r + 1)/2.)  The polynomial g(x), 
defined by 

L+r-I 

is called the code’s generator polynomial. Note that C is a 
codeword if and only if the generating function for C ,  viz., 
C(x) = Co + Clx + . + Cn-lxn-l  is a multiple ofg(x).  If n 
is odd and r is even, and L = (n - r + 1)/2,  then the roots of 
g ( x )  come in reciprocal pairs (a/ d), fo r i  = L ,  . . . , L  + ( r /2 )  
- 1, and g ( x )  is a “palindrome.” 

The basic metric property of an RS code is that any two 
codewords must differ in at least r + 1 positions. Thus if 
d,(C, C’ )  denotes the Hamming distance between the code- 
words C and C ’ ,  and C # C ’ ,  then it follows that 

The basic combinatorial property of an RS code is that given 
any subset I E { 0 ,  1, . . . , n - 1 )  of at most k coordinate posi- 
tions, and an arbitrary set {ai : i E I }  of elements from F ,  
there exists an RS codeword C such that Cj = ai for all 
i E I .  (Proofs of these basic properties can be found in [ 2 ] ,  
Section 7.3.) 

Suppose we transmit a codeword C over a channel, which 
can, on occasion, change any symbol from F into any other, 
and which in addition can “erase” any symbol, i.e., make it 
completely unintelligible. To model erasures, we introduce an 
“erasure symbol” * and add it to  F : F =  F U { *}. Thus we 
send a codeword, and receive a vector R = (R, ,  R , ,  . . . , Rn-l )  
from F“. The RS decoding problem, ideally, would be this: 
given R E F n ,  find the nearest RS codeword. However, that 
proves to be too hard, and we must be satisfied with the solu- 
tion to an easier but closely related problem. 

To state the decoding problem precisely, we must define a 
distance between vectors over F, the RS decoding disrance. If 
V = (Vo, . . . , Vn-,) and V’ = (V i ,  . . . , Vi- , )  are vectors with 
components in F,  we define 

n-1 

(4) 

where if x and y are elements of E 

0 i f x = y  

d m ( x , y )  = 1 i f x f y  a n d e i t h e r x o r y i s *  

2 if x # y but neither x nor y is * i (5 1 

One way to think about this metric is shown in Fig. 1 ,  for 
F = GF(3). The elements of F a r e  the vertices of a graph, with 
every element of F connected to * by an edge. Then d m ( x , y )  
is just the distance between x and y in the graph. Note that if 
V and V‘ are vectors with components in F (i.e., with no *s) 
we have 

dw(V, V ’ )  = 2 d H (  V, V ’ )  ( 6 )  

The decoding problem for an RS code of redundancy r can 
now be stated. Given an arbitrary vector R = ( R o ,  . . . , R n - l )  
with components from E find all RS codewords C such that 

First, note that there can be at most one codeword C such that 
Eq. (7) holds. This is because if dw(C, R )  G r and dw(C’, R)  
G r ,  then by the triangle inequality 

dm(C, C ’ )  G dw(C, R )  + dRs(R, C ’ )  < 2r (8) 

which implies by Eq. ( 5 )  that dH(C,  C‘) < r ,  violating Eq. (3), 
unless C = C’.  

We now describe an efficient algorithm, essentially due to 
Elwyn Berlekamp ([l] , Chapter 7), for solving the decoding 
problem. 

For a given R ,  its erasure sef I, is defined as 

Io = {i:RI=*} fo=lIoI (9) 

(The notation IS1 denotes the number of elements in the set 
S.) The decoder’s first step is to calculate the erasure locator 
polynomial u,,(x), defined by 

i= 0 
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(If there are no erasures in R, uo(x) is defined to be 1.) If the 
number of erasures to exceeds r,  there can be no solutions to 
Eq. (7); in this case the decoder should simply print “too 
many erasures!” and stop. We will assume that to < r in the 
rest of the discussion of the decoding algorithm. 

Once the erasure locator polynomial is calculated, the de- 
coder replaces the *s in R with symbols from F. Usually these 
symbols are chosen to be Os, but if the decoder has “side infor- 
mation” about the original values of the C,s corresponding to 
the erased indices i E I,, these values can be used. In any case, 
the result is a new vector R’ = (R;, . . . , RA-l), defined by 

Ri if i 4 Io 

Zi if i E Io 
(1 1) R,: = 

where Zi = 0 is the usual choice. 

Next, the syndrome is computed, i.e., the r values 

n-1 

3 = RIaij f o r j = L , L  + 1 , .  . . , L  + r  - 1 (12) 
i= 0 

which are used as coefficients in the syndrome polynomial 

S(x)  = SL + SL+lx + * . + SL+r-l x‘-l 

If erasures are present the decoder continues by calculating the 
modfied syndrome polynomial So(x), defined by 

So(x) = S(x)  u,, (x) (modx‘) (1 4) 

Now comes the key step. Define the numbers p and v by 

(see Appendix C). The polynomial ul(x)  is traditionally called 
the error locator polynomial, and w ( x )  is called the error-and- 
erasure evaluator polynomial. Now the decoder multiplies 
uo(x) and ul(x), obtaining a polynomial u(x),  called the 
erasure/error locator polynomial. 

Once the polynomials u(x) and w ( x )  are known, there are 
two essentially different ways to complete the algorithm. 
These are usually called the rime-domain approach and the 
frequency-domain approach. 

The rime-domain approach can be described by the follow- 
ing pseudocode fragment. 

/*  Time domain fragment */ 
i 

if (ao = 0 or deg(o) > to t deg(ul)) 

else { 

decode = FALSE; 

count = 0; 
f o r ( i = O t o n - 1 )  { 

i f ( u ( a - i ) = O  and 0 ‘ ( a - ~ ) # 0 )  { 

count = count t 1 ; 

1 
else 

E, = 0; 

1 
if (count = deg(u)) 

decode = TRUE; 
else 

decode = FALSE; 
I 

1 

v = T(r t ro ) /21 -  1 After execution, if “decode” is “TRUE,” C = (C,, . . . ,Cn-l), 
where Ci = R ;  - Ei for i = 0, 1,  . . . ,n - 1 is the unique code- 
word within RS distance r of R. On the other hand, if “de- 
code” is “FALSE,” the decoder just prints the warning “no 
codeword within RS distance r.” All early RS decoders used 
an algorithm much like this; such an algorithm is described as 
a “hybrid decoder” in Figure 9.2 in Blahut [2]. 

(If x is a real number, LxJ is the greatest integer less than or 
equal to x ,  and Txl is the least integer greater than or equal to 
x.) It is an easy exercise to show that p t v = r - 1. The de- 
coder now solves the (x‘, So(x), p, v) problem, i.e., it finds the 
unique lowest degree pair of polynomials ul(x)  and ~ ( x )  such 
that deg(ul) G p, deg(w) < v, and 

The frequency-domain approach can be described by the 
following pseudocode fragment. (In this listing, d denotes the 

ol(x)So (x) w(x) (modx‘) degree of u(x).) 
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/ * Frequency Domain Fragment * / 
{ 

$(ao = 0) 

decode = FALSE; 

else { 

decode = TRUE; 

for (j = L t r to n + L t d - 1) 

f o r 6  = n + L t o n + L + d  - 1) 

if@j f 
decode = FALSE; 

break; 

3 
if (decode = TRUE) 

for (i = 0 to n - 1) 

The decoder now finishes exactly as the time-domain de- 
coder did. The “frequencydomain decoders” described in 
[2, Figure 9.21 and the decoder described in [5] follow this 
general description. (The “time-domain decoder” described in 
Figure 9.7 in [2] is a rare example of an RS decoding algo- 
rithm which is apparently not closely related to the descrip- 
tions in this section. See Whiting [6] for a survey of Reed- 
Solomon decoding algorithms.) 

I 
In each case, the algorithm will locate the codeword within 

RS distance r of R ,  if there is one, and will print the message 
“no codeword within RS distance r” if there is not. The fol- 
lowing theorem explains why. 

Theorem 1. There is a codeword within RS distance r of R if 
and only if the following three conditions are satisfied: 

Proof: First, we suppose there is a codeword C = (C,, . . . , 
Cn-,) within RS distance r of R. We will show that conditions 
(A), (B), and (C) are satisfied. To do this, we define Io, ao(x), 
and R’ as in Eq. (11) (the erasure fills Zi can be arbitrary). 
Next, we define the error set I, and error locator polynomial 
01 (XI as 

I1 = { i q  Io : R i f q }  (1 6 )  

ul(x) = fl (1 - a ’ x )  (1 7) 
i E I l  

and the error-and-erasure pattern as E = ( E o , .  . . , En-,), 
where 

Ei = R ; - C i  f o r i = O ,  . . . ,  n - 1  (1 8) 

Finally we define the error-and-erasure set I and the error-and- 
erasure locator polynomial u(x) by 

I = zo u I ,  (19) 

It follows from Eqs. (12), (18), and (1) that the syndromes 
4 satisfy 

n-1 

which implies that 
n-1 

T h u s E ~ ,  SQ1,. . . , EL+r-l are the first r components of the 
DFT V = (6, . . . , Vne1) of the “twisted error pattern” V =  
(V, , VI, . . . , Vn-l ), defined by 

5 = EiaiL f o r i = O ,  . . . ,  n - 1  (23) 
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where So(x) is defined in Eq. (14). If we now define the error- 
and-erasure evaluator polynomial as 

dRs(C, R) = f o  + 2 deg (a,) < fo  t 2 p  < fo  

+ 2 [ ( r  - r 0 ) / 2 j  G r  (31) 
w ( x )  = P p ( x )  (25) 

iEZ All that remains is to show that C ,  as defined in Eq. (30), is a 
codeword. Since a, and o ( x )  solve the (x', So(x), 1.1, v) prob- 
lem, we know that where d ( x )  = o(x)/( l  - six), (compare this to Eq. (B-5) in 

Appendix B), it follows from Theorem B-6 in Appendix B that 

a@) F ( x )  = w(x)  (1 -x") 
crl(x) S,(x) w(x)  (mod x') 

h h But by Eq. (14), So(x) = S(x) uo(x) mod x'; and since a (x)  = 
ao(x) ul(x), by Eq. (32) we have 

and so, since u(x) = ao(x) a l (x)  and V,(x) = ao(x) V(x), 

a,(x) c ( x )  E w(x) (modx') 

Furthermore, since C is assumed to have RS distance r or less 
from R, it follows that to + 2 deg(a,) < r ,  which in turn im- 
plies deg(al) < p, and deg(w) < deg(a) = to + deg(o,) G v, 
where p and v are defined in Eq. (15). Furthermore, a, and w 
are relatively prime, since by Lemma B-2 in Appendix B for 
each i E Z, , w((u-') # 0. Therefore (al, w )  is the solution to 
the (xr, c ( x ) ,  1.1, v) problem, which by Eq. (24) is the same as 
the (x', So(x), p,  v) problem. Thus the polynomials produced 
by the decoding algorithm must be the error locator poly- 
nomial and the error-and-erasure evaluator polynomial, and 
these polynomials satisfy conditions (A), (B), and (C): Equa- 
tion (25) implies (A); Equation (10) implies (B); Equation 
(20) implies (C). 

u ( x ) S ( x )  E w(x) (modx') (33) 

On the other hand, by Eqs. (28) and (29), together with Theo- 
rem B-6 in Appendix B, we have 

a (x)  P ( x )  E w ( x )  (modx') (34) 

Now gcd(ao(x), x r )  = 1 (see Eq. lo), and condition (B) guar- 
antees that gcd(al (x), x') = 1, and so gcd(o(x), x r )  = 1. Thus 
by Eqs. (33) and (34) we have 

S(x)  p (x )  (modx') (35) 

Equating coefficients of x i  for j = 0, 1, . . , , r - 1 on both sides 
of Eq. (35), we see that 

To complete the proof, we suppose that conditions (A), 
(B), and (C) are satisfied. We will show that this implies that 

h 

= 7 f o r j = O , l ,  . . . ,  r - 1  (36) 

there is a codeword within RS distance r of R. To do this we 
define U(X) = u,(x) o,(x); note that condition (A) says that 
deg(w) < deg(o), and condition (C) says that a (x) l ( l  - x"). 
Hence by Theorem B-5 in Appendix B, there exists a vector 
V=(Vo,  V, ,  . . . , Vn-,)andasupport s e t I fo rVsuch tha t  

But this implies that 

"-1 "-1 C R , ! ~  = ~ a - ' ~ a ' j  f o r j = L , .  . . , L  + r -  1 
i= 0 i= 0 

a(x)  = haz(x) (28) 
(37) 

(29) 
which says that C ,  as defined by Eq. (30), is a codeword. 

We claim now that the vector C = (C,, . . . , Cfl-,), defined by 
With the help of Theorem 1, we can now explain why the 

time-domain and frequency-domain decoders work. First, we 
discuss the time-domain decoder. The f i s t  line checks condi- 
tion (A) and (B) of Theorem 1. The "for" loop checks condi- 
tion (C), by evaluating the polynomial a ( x )  for x = wi, for 
i = 0, 1 , . . . , n - 1. Notice that there is a check for a'(a-') = 0; 
this is necessary, since as we will see, it is possible for a(x) to 
have a double root. The formula for Ei follows from Eq. (26) 
and Corollary B-7 in Appendix B, and the fact that Ei = &a-Li 

Ci = R,! - fo r i  = 0 , .  . . , n - 1 (30) 

is a codeword w i t h  RS distance r of R. First we show that 
dw(C, R) < r. This is because R has r, erasure symbols, and 
apart from these, differs from C only in those indices i for 
which y. f 0, Le., u i ( c i )  = 0. But by condition (C), a, has 
exactly deg(ol) roots in { 1, a,  . . . , }, and deg(a,) < p,  
and so (see Eq. 23). 
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Next, we consider the frequency-domain decoder. The first 
line checks condition (B) of Theorem 3. The first “for” loop 
extends the sequence S,, SL+l, . . . , SL+r-l recursively, using 
u(x) as the characteristic polynomial, and the second “for” 
loop checks to see whether or not this extension has period n .  
If the sequence is not periodic, then either condition (A) or (C) 
must fail, by the fust part of Theorem B-10 in Appendix B. 
On the other hand, if the sequence is periodic, then 

tion (B) anyway since it is so easy to  do so; if (B) fails, no fur- 
ther work is necessary. Theorems 2 and 3 show conditions (A) 
and (C) are independent, however, so that they both must be 
checked. 

Theorem 2. For any word R E F”, the polynomials ul(x) 
and w ( x )  must satisfy the following three conditions: 

d 

uk3-k  = 0 f o r a l l j > L + d  
k=O 

and so if u ( x )  = SL t SL+lx + . , then u(x) u(x)  has de- 
gree < d. But u(x) u ( x )  = w ( ~ )  (mod x r ) ,  and so deg(o) < 
d ,  i.e., condition (A) is satisfied. Next, since condition (B) 
insures that gcd(ul, w) = 1 ,  the second part of Theorem B-10 
shows that condition (C) holds. Finally, the formula given 
for the error vector Ei follows from the fact that (S,, . . . , 
SL+n-l) is the DFT 9 of the twisted error V vector defined in 
Eq. (23) .  This follows from the basic Theorem B-6, which says 
that the components of 0 satisfy the homogeneous difference 
equation whose characteristic polynomial is ~ ( x ) .  

All published RS decoding algorithms correctly locate the 
codeword within RS distance r of the received word, if there is 
one. However, almost all of these algorithms (including all 
algorithms in [ 2 ] ,  [3], [SI, and [ 6 ] )  can fail badly when 
there is no such word. By this we mean that there usually exist 
words R which are not within RS distance r of any codeword, 
and yet w h c h  cause the decoder to output a vector C rather 
than to print the message “no RS codeword within RS dis- 
tance r.” One naive way to avoid this problem is simply to test 
any word produced by the decoder to see if it is a codeword, 
and then to see if it is w i t h  RS distance r of the received 
word. However, this method is not quite foolproof (division 
by zero is possible in either the time- or frequencydomain 
approaches), and more complex than necessary. 

The difficulty is that the decoders typically do not check 
all of the conditions (A), (B) and (C) of Theorem 1. The next 
two theorems explain why it is essential to make this check. 
Theorem 2 gives conditions on the polynomials u1 and w that 
must always be satisfied, whether R is within RS distance r of 
a codeword, or not. Theorem 3, on the other hand, shows that 
the conditions imposed on u1 and w in Theorem 2 are suffi- 
cient to guarantee the existence of a vector R which will pro- 
duce these polynomials. Together, these two theorems show 
that there are Rs that will produce uls and o s  satisfying some 
but not all of conditions (A), (B), and (C). Actually, condition 
(C) implies condition (B), but it is worthwhile to  check condi- 

(F) gcd(u,,w) = x i  

where x i  is the highest power of x dividing u1 (x). 

Proof: Conditions (D) and (E) follow from the definition of 
the (a, b ,  1.1, u )  problem. Condition (F) follows from Lemma 
C-3 in Appendix C. 

Theorem 3. Conversely, given a set Io of ro erasure locations 
and any pair of polynomials al(x) and w(x) satisfying condi- 
tions (D), (E), and (F), there exists a vector R E Fn, and a 
choice of “erasure fills” Zi (see Eq. 11) which will produce 
Xo,(x) and Xw(x) as the solution to the (xr, So(x), 1.1, u) 
problem. Indeed, if ul(x) and w(x)  are relatively prime, let 
S = [So, S, , . . . , Sn- ] be any vector such that 

where u(x) = ao(x) a,(x), and if the vector R’ = [RA, . . . , 
RA-,] is defined to  be the inverse DFT of S, i.e., 

j= 0 

and if R is defined by 

Ri = 

R; if i $€ Io 

(40) 
* ifi E Z, 

then if the RS decoding algorithm is applied to R, (using the 
components of R‘ to fill in the erasures) ul(x) and w ( x )  will 
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be the error locator and error-and-erasure evaluator polynom- 
ials. Similarly, if gcd(u, , w) = x i  wi th j  > 0 ,  any S satisfying 

SL t sL+lx + . * . +SL+r-j-l xr+l t SL+r-jX’-i # 

again with R’ and R defined as in Eqs. (39) and (40), will do. 

Proof: We distinguish two cases: gcd(ul, w) = 1 and 
gcd(al , a) # 1. If gcd(u, , w) = 1, and So(x)  is defined to be 

the polynomial w ( x ) / u , ( x )  mod x‘, then by Theorem C 4  in 

Appendix C and the example following it, (u,, w) is the solu- 
tion to the (x‘, So(x), p ,  v) problem. Now if the decoding 
algorithm starts with R, and fills in the erasures to  produce R’, 
by Eq. (39) the syndrome polynomial S ( x )  will be SL t SL+,x 
t . t SL+r-l~r-l, which, by Eq. (38), is the same as 
w(x)/u(x) mod x‘. Thus the modified syndrome u,(x) S ( x )  
will be So(x) = w ( x ) / u l ( x )  mod x‘,  and, as we have seen, this 
means that the decoding algorithms will produce s l ( x )  and 
~ ( x )  as the error evaluator and error-and-erasure evalua- 
tor polynomials. The case when gcd(u,, o) # 1 is handled 
similarly. 

Corollary. If to < k ,  then there is a vector R, that produces 
(ul, a) as the error locator polynomial and error-and-erasure 
evaluator with zeros as the erasure fills. 

Proof: Let R be the vector defined by Eq. (40), and let C 
be any RS codeword that agrees with R on the set I,. (There 
will be such a codeword, by the basic combinatorial property 
of RS codes, since k > to.) Then the vector R = R, - C will 
have the same syndrome as R,, and has zeros on the erasure 
set Io. 
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f 
Fig. 1. Illustration of the RS decoding 

metric for GF(3). 
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Appendix A 

The Discrete Fourier Transform 

Let F be a field which contains a primitive nth root of 
unity a. (If the characteristic of F is finite, we assume that it 
does not divide n .) We first note 

i= 0 

This is because the polynomials on both sides of Eq. (A-1) 
have degree n ,  constant term 1 ,  and roots a-i, for i = 0, 1 ,  . . . , 
n - 1 .  

Next, let 

be an n-dimensional vector over F ,  and let 

be its discrete Fourier transform (DFT), defined by 

n-1 

(A-3) 

The components of V can be recovered from those of 0 via 
the inverse DFT 

If we interpret the components of V and 9 as the coefficients 
of polynomials, i.e., if we define 

(-4-6) x n - l  V(X)  = vo + V1x + * * + v,-l 
and 

h 

('4-7) 
h 

V(X) = % t T x  t . . * + v , - l x n - l  

then the DFT and IDFT relationships, Eqs. (A-4) and (A-5) 
become 

and 

1 -  ' 

n y. = - V(aW-') (A-9) 
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Appendix B 

Some Important Polynomials and the Fundamental Identity 

Throughout this section I will denote a fixed subset of 
{ 0, 1, . . . , n - I}. We associate several polynomials with this 
set. For example, the locator polynomial for I is 

The co-locator polynomial is 

T I ( X )  = n (1 - a'x) 
igI 

In view of Eq. (A-1) we plainly have 

For each value of i E I we also define 

Finally, let V = ( G ,  Vl , . . . , V,-,) be a vector, such that I is 
a supporr set for V, i.e., = 0 if i 4 I .  Then the (V, I )  evalua- 
tor polynomial is defined as 

i E I  

We will need several lemmas about these polynomials. 

Lemma B-1 . For all i, j E I, 

( 0  i f j # i  

In particular, # 0. 

Lemma B-2. If i E I, W ~ , ~ ( ( Y - ~ )  =  CY-^). In particular, 
w ~ . ~ ( a - ~ )  = 0 if and only if 5 = 0. 

Proof: This follows from Eq. (B-5) and Lemma B-1. rn 

Lemma B-3. The polynomials uf'(x) are linearly indepen- 
dent, and therefore form a basis for the set of all polynomials 
of degree < I I t .  

Proof: If 

h,U; (x)=O 
i El 

on setting x = a-j, we would get by Lemma B-1 , A .  ui(a-') = 0, 
but since (again by Lemma B-1) ~ f ' ( a - ~ )  # 0, this lmplies that 
hi = 0. The last statement of the lemma now follows from 
the facts that (a) each uj(x) has degree exactly 111 - 1 and 

rn 

1 .  I 

(b) there are exactly I I I of them. 

The next lemma deals with the minimal support set I (V)  of 
V, which is defined by 

In what follows, the corresponding polynomials will be de- 
noted by av(x), rV(x), and ov(x), rather than U ~ ( ~ , ( X ) ,  etc. 

Lemma B-4. 

In particular, gcd(uv(x), wv(x)) = 1. 

Proof: If q , I ( x )  had a factor in common with uI(x), then 
by Eq. (B-3) ~ v , ~ ( a - j )  = 0 for some i € I .  But by Lemma B-2, 
this is true if and only if 5 = 0, i.e., if i € I  - I(V).  

We note that for any V and support set I ,  uI(x) divides 
1 - x" and deg w ~ , ~ ( x )  < deg uI(x). The following theorem 
is a kind of a converse to this. 

Theorem B-5. Suppose u(x) and w(x) are polynomials such 
that u ( x ) l l  - x" and deg(w) < deg(o). Then there exists a 
vector V and a support set I for V such that 

Proof: Follows immediately from Eq. (B4). rn u(x) = A q x )  (B-7) 
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= <U;(x) (1 -x")  
i E I  

for a nonzero constant h. Furthermore,if in addition gcd(u(x), 
= w (x) (1  -x")  w(x)) = 1, then in fact there exists a vector V such that V,I 

u(x)  = x q x )  

w(x )  = hwv(x) 

03-91 

(B-lO) 

The following Corollary to Theorem B-6 tells us how to 
reconstruct the nonzero components of V from uI(x) and 
W ~ , ~ ( X ) .  It involves the formal derivatiue u;(x) of the poly- 
nomial uI(x). 

Proof: Suppose I -x". Then Eq. (B-7) must for Corollary B-7. I f 1  is a support set for V, then for each i €1, 
some subset I of { 0, 1,  . . . , n - l} and some nonzero constant 
A. Since deg(w) < deg(u) = deg(uI), and since the polynomials 
uf'(x) are linearly independent by Lemma B-3, 

we have 

q 7 ,  I@-'  1 v i = -,i (B-15) 
w(x)  = x UiUj'(X> (B-11) a;@-') 

i E I  

Proof: If we differentiate the fundamental identity in Eq. 
for certain constants ui.  Thus if we define (B-13) we obtain 

(B-12) UI(X) P y x )  i- q x )  P ( x )  = o v , I ( x )  (-nx"--') 

+ w;,JX) (1 -x")  Eq. (B-10) follows on comparing Eq. (B-11) to Eq. (B-5). 

I = Z(V), and so if gcd(u(x), w ( x ) )  = 1, Eqs. (B-7) and (B-8) 
become Eqs. (B-9) and (B-10). 

Finally, by Lemma B-4, gcd(uI(x), w ~ , ~ ( x ) )  = 1 if and only if (B-16) 

Note that if x = ~1- l  with i E I ,  from Eqs. (B-3) and (A-1) we 
see that both uI(x) and 1 - x" vanish. Thus if x = c r i ,  Eq. 
(B-16)becomes The next theorem is the most important result in this 

section. 

Theorem B-6. If I is a support set for V, then the poly- u;(a-i) Qa-i) = -nffiwv,I(a-i) (B-17) 

But from Eq. (A-9), P ( d )  = n q .  This fact, combined with 

nomials V(x), uI(x), and O ~ , ~ ( X )  satisfy 

UI(X) R X )  = Wy,I(X) (1 -x") (B-13) 

Proof: Using the definitions in Eqs. (A-4) and (A-7), 
together with the fact that I is a support set for V, we find 
that 

Eq. (B-17), completes the proof. 

Corollary B-8. gcd(?(x), 1 -x") = T ~ ( X ) .  

Proof: From Eq. (B-3) with I = I ( V ) ,  we have 1 - x" = 
uv(x) rV(x). Then, if we divide both sides of Eq. (B-13) by 
uv(x), we get P(x)  = ov(x) T ~ ( X ) .  Since by Lemma B-4, 

"-1 

O(x) = 5 c x i  (r'i (B-14) 
i E I  j = O  gcd(uV(x), o v ( x ) )  = 1, the Corollary follows. 

Now we can prove a kind of converse to Theorem B-6. 

Theorem B-9. Suppose that the vector V is given, and that 

According to Eq. (B-4), uI(x)  = uf'(x) (1 - ai x )  for all i E I, 
and so from Eq. (B-14) we have 

for certain polynomials u(x) and o ( x )  we have 
._ - 

UI(X) O(x)  = yU;(x) (1 - a ' x )  x i  aij 

i E I  j = O  u(x) 9 ( x )  = w(x)  (1 -x") (B-18) 
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Then there exists a polynomial A(x) such that 

Proof: By Eq. (B-18) we have 

u(x)?(x) E 0 (mod 1 - x " )  (B-21) 

This implies that 

(B-22) 
gcd( 1 - x" , p(x)) 

But by Corollary B-8, gcd(1 - x", P(x)) = T ~ ( x ) ,  and from 
Eq. (B-31, 

and so Eq. (B-22) is equivalent to Eq. (B-19), for a suitable 
polynomial h(x). Then Eq. (B-18) becomes 

X(x) uv (x) P ( x )  = w ( x )  (1 - x " )  (B-23) 

but multiplying Eq. (B-13) by X ( x )  we obtain 

X ( x )  uv (x) P ( x )  = X(x) wv (x) (1 - x") (B-24) 

Comparing Eq. (B-23) to Eq. (B-24), we see that 

as asserted. This completes the proof of Theorem B-9. 

The next results in this section deal with homogeneous dif- 
ference equations (HDEs). We say that the infinite sequence 
uo, u l ,  . . . satisfies a dth-order HDE if there exist constants 
uo, . . . , ud, with uo # 0 and ud f 0 such that 

d 

u,u,-~ = 0 f o r j 2 d  (B-26) 

and w(x)  = wo + * . + w d - l ~ d - l ,  then it follows from Eqs. 
(B-26) and (B-27) that (u,) satisfies an HDE with characteristic 
polynomial u(x) if and only if 

where deg(o(x)) < deg(u(x)). In particular, the sequence 
(uj)  is periodic of period n, i.e., u, = uj-" for j 2 n,  if and only 
if there is a polynomial n ( x )  of degree < n such that 

(1 -X")U(X) = s l (x)  (B-29) 

where deg R < n. The following theorem is needed in the dis- 
cussion of the frequency-domain decoder. It assumes that (uj) 
is a sequence that satisfies a dth-order HDE with characteristic 
polynomial u(x), as described by Eq. (B-28). 

Theorem B-10. If u(x) divides 1 - x", then the sequence 
(uj) has period n. Conversely, if (u,) has period n and if u(x) = 
uo(x) u,(x), where uo(x) divides 1 - x" and gcd(ul(x), 
w(x))  = 1, then a(x) divides 1 - x " .  In particular, if gcd(o(x), 
1 - x " ) =  l , t h e n u ( x ) I l  -x". 

Proof: If u(x) divides 1 - x", then 1 - x" = u(x) ~ ( x )  for 
some polynomial T(x). If we multiply both sides of Eq. (B-28) 
by T(x), we obtain (1 -x") u(x)  = w ( x )  T(x). But deg(w(x) 
T ( x ) )  < deg(u(x) r (x) )  = n, and so by Eq. (B-29) (uj) has 
period n. 

Conversely, if Eq. (B-29) holds, and we multiply Eq. (B-28) 
by 1 - x" and Eq. (B-29) by u(x), then we find that Q ( x )  

u(x) = w ( x )  (1 - x" ) .  Therefore u(x)  Iw(x) (1 - x").  
Since u(x) = uo(x) ul(x) and uo(x) I1 - x", it follows that 
u , (x ) lw(x ) ( l  -x")/u,(x). But gcd(o,(x),w(x)) = 1, and 
this means that q(x )  I(1 -x")/uo(x), which implies that 
u(x) = uo(x) u1 (XI  I1 - x". m 

Having briefly discussed homogeneous difference equations, 
we are now in a position to discuss circular homogeneous d$- 
ference equations (CHDEs). We say that the finite sequence 
(uo, . . . , u " - ~ )  satisfies a dth-order CHDE if there are con- 
stants uo, ul, . . . , ad with uo # 0 and ud # 0, such that 

k=O 

d 
The polynomial u(x)  = uo + * - + ad xd is called the charac- 
teristic polynomial of the HDE, and the degree d of u(x)  is 
called its order. If we define 

i 

w. I = c ukuj-k f o r j = O , .  . . 
k=O 

, d  - 1 (B-27) 

u ( x ) u ( x )  = w(x)  (B-28) 

(B-30) C u u = o f o r j = O ,  . . . ,  n - 1  k j - k  
k=O 

where the subscripts must be i n a p e t e d  mod n. The poly- 
nomial u(x)  = uo + uIx + . . . + udxd is called the characteristic 
polynomial of the CHDE, and d is its order. If we define 
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I u ( x )  = u,, t u l x  + t U , _ ~ X " ,  then Eq. (B-30) holds if and 
~ only if 

a ( x )  u ( x )  E 0 (mod 1 - x " )  (B-3 1)  

Equivalently, (uo,  . . . , un-l)  satisfies a CHDE if and only if 
there is a polynomial w ( x )  such that 

a ( x ) u ( x )  = o ( x )  (1 - x " )  (B-32) 

Plainly, the a ( x )  of smallest degree such that Eq. (B-32) holds 
is 

(B-33) 

which is a divisor of 1 - x n .  Thus Theorem B-6 says that 7 sat- 
isfies a CHDE of order 111, where Lis any support set for V. 
Conversely, Theorem B-8 says that V does not satisfy a CHDE 
of order lower than II(V)l.  But we know from Eq. (B-6) that 
I I ( V )  1 = weight (V) and so we have proved Theorem B-1 1 .  

Theorem B-11. The weight of V is the degree of the least- 
order CHDE satisfied by ?. 
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Appendix C 

The (a(x), b(x), p, U) Problem 

Given polynomials a ( x ) ,  b ( x ) ,  with deg(b) < deg(a) = m, 
and nonnegative integers p, v with p + v = m - 1, consider the 
set S = S(a, b ,  1.1, v )  of all pairs of polynomials ( u ( x ) ,  w(x)) 
such that 

deg(u) < p deg(w)<v  (C-1) 

u(x) b ( x )  E w ( x )  (mod a ( x ) )  (C-2) 

Theorem C-1. If 1.1 + u = m - 1, the set S(a, b ,  p,  v )  is not 
empty. Indeed, there exists a pair (a,, w,) E S(a, b ,  p, v )  such 
that every pair (u(x), w ( x ) )  E S ( a ,  b ,  p, v )  is of the form 

4 x 1  = k ( x )  w o w  (C-4) 

Furthermore, (u,, w,) is unique up to multiplication by sca- 
lars. We summarize this by saying that (a,, wo) “solves the 
(a (x) ,  b(x ) ,  p, v) problem.” 

Proof: A proof is given in [3] , Theorem 8.5, where it is also 
pointed out that Euclid’s algorithm can be used to find (u,, 
w,). Specifically, if one applies Euclid’s algorithm as described 
there to the pair ( a ( x ) ,  b ( x ) ) ,  and stops when the degree of 
the remainder rj(x) becomes < v for the first time, then (rj(x),  
r i (x))  is the solution to the ( a ( x ) ,  b ( x ) ,  p, v)  problem. 

Lemma C-2. (u, w) E S(a, b ,  p, v)  solves the (a, b ,  p, v )  
problem if and only if there exists a polynomial r ( x )  such that 

w = ab + ra (C-5) 

where 

Proof: Suppose that (u, w) solves the problem. Then by Eq. 
(C-2), there exists a polynomial r ( x )  such that Eq. (C-5) holds. 
If w(x), u(x), and r ( x )  had a common factor d ( x ) ,  then with 
0’ = o l d ,  u’ = u/d, and T I  = r /d ,  Eq. ((2-5) implies 0’ = u’b 
+ r’a, which means a’b w’ (mod a )  is a smaller degree solu- 
tion to Eqs. (C-1) and (C-2), contradicting the minimality of 
(097).  

Conversely, suppose Eqs. (C-5) and (C-6) hold, and that 
(u,, , w,) solves the (a, b ,  p, v )  problem. Then by Theorem C-1, 
w = kw,, u = ku,, and Eq. (C-5) becomes 

kw, = ku,b + ra (C-7) 

But since (u,, w,) E S(a, b ,  p, v), we know that oo = uob 
t ro a for some polynomial r0(x) ,  and so we have 

kuo  = kuob + kr,a 

Comparing Eqs. (C-7) and (C-8), we see that r = kr,, and so 
klgcd(w, , ul, 7,). This implies by Eq. (C-6)  that k is a scalar 
and so (u, w) is a scalar multiple of (u,, a,), i.e., (ul, w l )  
solves the (a,  b, p, v )  problem. 

Lemma C-3. If (u,, w,) solves the (a ,  b ,  p, v) problem, then 

Proof: By Lemma C-2 we know that 

wo = aob +rOa (C-10) 

with 

(C-11) 

Now by Eq. (C-10) any common divisor of a, and a must 
divide w,, i.e., gcd(u,, a) Igcd(u,, w,). On the other hand, 
Eq. (C-10) also says that any common divisor of a, and oo 
must divide rOa and so by Eq. (C-11) must divide a. Thus 
gcd(q), w,)lgcd(u,,a). 

Theorem C-4. Conversely, given polynomials a(x ) ,  uo(x), 
and wo(x) such that Eqs. (C-1) and (C-9) hold, there exists a 
polynomial b (x) of degree < m - 1 such that (uo , w,) solves 
the (a (x ) ,  b ( x ) ,  p, v )  problem. 

Proof: Let d ( x )  = gcd(u,(x), wo(x) )  = gcd(u,(x), a(x)),  
and u1 = uo/d, w1 = w o l d ,  al = u/d. Since gcd(al, a l )  = 1 we 
can define 

b’ = -modal  (C-12) 
IJ1 

It follows that 

alb’ E w1 (mod a l )  (C-13) 

166 



I 

i.e., 

w1 = ulb' t ~~a~ (C-14)  

shows that gcd(d, T ~ )  = 1. Thus if we multiply Eq. (C-19) by 
d we obtain 

wo = a. b + rOa (C-20) 
for a suitable polynomial (x). We note that 

since a common factor of a, and 7, would by Eq. ((2-14) also 
divide w1 ; but gcd(al, w,) = 1. We now distinguish two cases, 
according to whether d and T~ have a factor in common or 
not. 

Case 1: gcd(d, 7,) = 1 .  In this case if we multiply Eq. 
((2-14) by d we obtain 

with gcd(wo, ao, r0) = gcd(d, T ~ )  = 1 ,  and so by Lemma (2-2, 
(ao, wo) solves the (a, b, p, v) problem, with b defined in Eq. 
(C-18). 

Example: Suppose a ( x )  = x m .  Then the construction of 
Theorem C - 4  simplifies considerably. Indeed, suppose we are 
given polynomials ao(x) and o o ( x )  such that Eqs. (C-1) and 
(C-9) hold, with a (x)  = x m  . Then gcd(ao , wo) = gcd(ao , x m )  = 
x i  for some value of j .  If b (x)  is such that Eq. (C-2) holds, 
then dividing by x i  we obtain 

wo = aob' t r l a  (C-16) a ,b  = o1 ( r n 0 d P - j )  (C-2 1) 

with gcd(ao, uo, 7,) = gcd(d, 7,) = 1, and so by Lemma C-2, 
(uo, w o )  solves the (a ,  b', p, v )  problem, where b' is defined 

where &'cd(o, ,x"-') = 1 .  Thus if (ao, w0) is to solve the 
(xm 5 b,  I*, v, Problem, then it must be true that 

by Eq. ((2-12). 

1 (C-22) b(X) O1 - (mod,yrn-j 

u1 
Case 2: gcd(d, T ~ )  # 1 .  In this case, let h(x) be the product 

of all the irreducible polynomials which divide p but do not 
divide T,, i.e., If j = 0, i.e., if gcd(ao, oo) = 1 ,  then Eq. (C-22) is both neces- 

sary and sufficient. On the other hand, i f i  2 1 ,  it is easy to see 
h = n ( p  : p is irreducible, p I d,  p 1 T,} (C-17) that Lemma C-2 implies that (ao, oo) solves the (xm ,-b, p, v) 

problem if and only if Eq. (C-22) holds and if in addition 

(C-23) 
Next, we define 

b(x)  f - (modxm-j+l)  

b = b ' t k ,  
(C-18) Thus if we expand ol /a ,  as a power series, viz. - To - TI  - Xu, 

Then from Eq. (C-14) it follows that - = a. t a , x  t * * .  (C-24) w1 

u1 = a, b + ~~u~ (c-19) then any b(x)  = bo t b,x t * t brn_,xm-l  will do,  provided 
that 

If p is an irreducible divisor of d ,  then p cannot divide T ~ ,  be- 
cause if p I T,  then p 1 a, by Eq. (C-15) and p 1 X by Eq. for k = 0, . . . , m - j - l k bk = a 

(C-l7) ,  so that p x T~ = T, - ha,. On the other hand, if p 1 7, , (C-25) 
then by Eq. (C-17) p I A and so again p 1 T~ = 7, - ha,. This bm-j * 0m-j  
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